perm filename GLENNA.TEX[EXM,TEX] blob
sn#567368 filedate 1981-02-25 generic text, type C, neo UTF8
COMMENT ⊗ VALID 00002 PAGES
C REC PAGE DESCRIPTION
C00001 00001
C00002 00002 \input basic
C00003 ENDMK
C⊗;
\input basic
\ctrline{\bfON THE CHARACTERIZATION OF CRYSTALLOGRAPHIC GROUPS}
\vskip l2pt
\ctrline{By}
\vskip l2pt
\ctrline{Hans Samelson}
\par
\vskip 24pt
Let $E(n)$ denote the (Lie)group of Euclidean notions of $R↑n$, i.e.
the group isonetrues if $R↑n$ with resepect to the distance $d(x,y) =
\leftvy-x\rightv=(\Sigma(y\downi-x\downi)\↑2)↑1/2. A subgroup \Gamma
of $E(n)$; here uniform means that the coset space $E(n)\Gamma$ is
compact.
\vfill